&lfla'ble.ne_t

Oracle SQL Plan Execution: How it
really works

Tanel Poder
http://www.tanelpoder.com

What is an execution plan?

For Oracle server:

= Parsed, optimized and compiled SQL code kept inside library cache

For DBAs and developers:
= Text or graphical representation of SQL execution flow

Often known as explain plan

= To be correct in terms, explain plan is just a tool, command in
Oracle

Explain plan outputs textual representation of execution plan into
plan table

DBAs/developers report human readable output from plan table

Tanel Poder

One slide for getting execution plan

Starting from 9.2 the usual way is:
= explain plan for <statement>
= select * from table(dbms_xplan.display)

In 10g
= the autotrace also uses dbms_xplan
= set autotrace on
= or select * from table(dbms_xplan.display_cursor())

Explain plan for has problems:
Inl 19 1) It treats all bind variables as

= DBMS_SQLTUNE.REPORT_SQL_MONITOR VARCHAR2

2) It might not show you the real

Other methods s sl vEs.
= sqgl_trace / 10046 trace + tkprof utility
Use V$SQL_PLAN_STATISTICS /
= v$sql_plan dbms_xplan.display_cursor

= setting event 10132 at level 1 instead!

= 3rd party tools (which use explain plan anyv?y)\/

Avoid "explain plan for" approach if possible!!!

Tanel Poder

Parse stages

Syntactic check
= Syntax, keywords, sanity

Semantic check

= Whether objects referenced exist, are accessible (by
permissions) and are usable

View merging
= Queries are written to reference base tables
= Can merge both stored views and inline views

Query transformation
= Transitivity, etc (example: if a=1 and a=b then b=1)

Optimization
Query execution plan (QEP) generation
Loading SQL and execution plan in library cache

soft parse

hard parse

Tanel Poder

SQL execution basics

______________________________ Execution plan

| Id | Operation | Name |

| 0O | SELECT STATEMENT | | SELECT
|* 1 | HASH JOIN | I

| % 2 TABLE ACCESS FULL| DEPARTMENTS | processor
| % 3 TABLE ACCESS FULL| EMPLOYEES |

£\

@
O
S
>
O
@
=
O
S

SELECT Query
E.LAST_NAME,
D.DEPARTMENT__NAME
FROM
EMPLOYEES E,
DEPARTMENTS D
WHERE
E.DEPARTMENT_TID =
D.DEPARTMENT_TID /3%
AND D.DEPARTMENT_NAME =
'Sales'
AND E.SALARY > 2000;

[ills,

cursor >€’/;T, /

application

EMPLOYEES

Tanel Poder

SQL execution basics - multitable joins

SELECT Multiple joins
E.LAST_NAME,

D.DEPARTMENT_NAME, SELECT @Q
L.CITY |]D <5
FROM Processor ﬂ

EMPLOYEES E, app.
DEPARTMENTS D,
LOCATIONS L

WHERE
E.DEPARTMENT_TID = D.DEPARTMENT_TID
AND D.DEPARTMENT_NAME = 'Sales'

AND D.LOCATION_ID = L.LOCATION_TIID

AND E.SALARY > 2000;
HASH JOIN

Only two row sources can be
joined together at a time

Row sources pass their data

S : EMPLOYEES
up" the execution plan tree

The join order is determined
during optimization phase

LOCATIONS

Tanel Poder

SQL execution terminology

ACCESS PATH

= A means to access physical data in database storage
= From tables, indexes, external tables, database links

ROW SOURCE
= A virtual stream of rows

= Can come through access paths from tables, indexes
= Or from other child row sources

FILTER PREDICATE

= A property of row source - can discard rows based on defined
conditions - filter predicates

JOIN

= Filters and merges rows based on matching rows from child
rowsources. Matching is defined by join predicates

= Any join operator can join only two inputs

Tanel Poder

First rule for reading an execution plan

Parent operations get input only from their children

Execution plan

| Id | Operation
SELECT STATEMENT StrUCtu re
FILTER
NESTED LOOPS OUTER
HASH JOIN OUTER
NESTED LOOPS OUTER
MESTED LOOPS OUTER
iase JoIn
TABLE ACCESS FULL USERS
NESTED LOOPS
HASH JOIN
MERGE JOIN CARTESIAN
HASH JOIN
FIXED TABLE FULL XSKSPPI
FIXED TABLE FULL XSKSPPCV

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
BUFFER SORT | |
TABLE ACCESS FULL | TSS |
| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

TABLE ACCESS FULL TABS
TABLE ACCESS BY INDEX ROWID OBJS

| INDEX UNIQUE SCAN I_OBJ1
TABLE ACCESS BY INDEX ROWID OBJS

] INDEX UNIQUE SCAN I_OBJ1
TABLE ACCESS BY INDEX ROWID OBJS

INDEX UNIQUE SCAN I_OBJ1

TABLE ACCESS FULL USERS
TABLE ACCESS CLUSTER SEGS

INDEX UNIQUE SCAN
NESTED LOOPS

I_FILE#_BLOCK#

INDEX RANGE SCAN I_OBJAUTHI
FIXED TABLE FULL XS$KZSRO
FIXED TABLE FULL XSKZSPR

Tanel Poder

Second rule for reading an execution plan

Data access starts from the first line without children

First operation with no children
(leaf operation) accesses data

Tanel Poder

Cascading rowsources

Data access starts from the first line without children

| Id | Operation ExeCUtlo
| 0 | SELECT STATEMENT Stru tu
|= 1 | FILTER |

| 2 | NESTED LOOPS OUTER |

|* 3 | HASH JOIN OUTER |

| 4 | NESTED LOOPS OUTER |

| 5 | NESTED LOOPS OUTER |

|* 6 | HASH JOIN

| 7 | TABLE ACCESS FULL | USERS

| 8 | NESTED LOOPS |

[* 9 | HASH JOIN (

| 10 | MERGE JOIN CARTESIAN |

|* 11 | HASH JOIN |

|* 12 | FIXED TABLE FULL | XSKSPPI

| 13 | FIXED TABLE FULL | XSKSPPCV

| 14 | BUFFER SORT |

| 15 | TABLE ACCESS FULL | TSS

|* 16 | TABLE ACCESS FULL | TABS

|* 17 | TABLE ACCESS BY INDEX ROWID | OBJS

|* 18 | INDEX UNIQUE SCAN | I _OBJ1L

| 19 | TABLE ACCESS BY INDEX ROWID OBJS

|* 20 | INDEX UNIQUE SCAN | I _OBJ1L

| 21 | TABLE ACCESS BY INDEX ROWID | OBJS

| * 22 | INDEX UNIQUE SCAN | OBJ1

| 23 | TABLE ACCESS FULL | USRS

| 24 | TABLE ACCESS CLUSTER | SE

|* 25 | INDEX UNIQUE SCAN | I_FI\E#_BL
| 26 | NESTED LOOPS |

|* 27 | INDEX RANGE SCAN | I _OBJANTHL
|* 28 | FIXED TABLE FULL | XS$SKZSRO

|* 29 | FIXED TABLE FULL | XS$SKZSPR
___ X$KSPPI X$KSPPCV

Tanel Poder

SQL execution plan recap

Execution plan lines are just Oracle kernel functions!
= In other words, each row source is a function

Data can only be accessed using access path functions
= Only access paths can access physical data
= Access paths process physical data, return row sources

Data processing starts from first line without children
= In other words the first leaf access path in execution plan

Row sources feed data to their parents
= Can be non-cascading, semi-cascading or cascading

A join operation can input only two row sources

= However, it is possible to combine result of more than 2 row
sources for some operations (not for joins though)

= Index combine, bitmap merging, filter, union all, for example

Tanel Poder

Troubleshooting: Reading DBMS_XPLAN execution plan profile

SQL> select * from table (dbms_xplan.display_ cursor (null,null, 'ALLSTATS LAST'));
PLAN_TABLE_OUTPUT

SQL_ID 56bs32ukywdsqg, child number O

select count (*) from dba_ tables
Plan hash wvalue: 736297560

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time |

| 1 | SORT AGGREGATE | | 1 | 1 | 1 |100:00:00.38 |

|* 2 | HASH JOIN RIGHT OUTER | | 1 | 1690 | 1688 100:00:00.37 |

| 3 | TABLE ACCESS FULL | EEEEE/////////\\i | 68 | 68 100:00:00.01 |

|* 4 | HASH JOIN OUTER | | 1690 | 1688 |00:00:00.37 |

|* 5 | HASH JOIN : T T

1 G tranle accmss pd Otarts number of times the rowsource was initialized

|* 7 | HASH JOIN

8 NESTED LOOPS ¢ E-rows CBO number estimated rows coming from rowsource
[* 9 | HASH JOIN RIQ

| 10 | TABLE ACCESS . .

% 11 | nasu gotn | A-rows actual measured number of rows during last execution
| 12 | MERGE JOIN

|* 13 | HASH JOIN . - . -

& 04 | cixep 1ad A-time actual measurec]' (and extrap.o/ateg') time spent mgde a
| 15 | FIXED TAH rowsource function or under its children (cumulative)

| 16 | BUFFER SOR

| 17 | TABLE ACO g .

1 1 | rapLe accnd Buffer numbe.r of buffer gets done within rowsource during last
|* 19 | INDEX UNIQUE execution

|* 20 | TABLE ACCESS F

| 21 | TABLE ACCESS FULL , o . — —— — - - —

Tanel Pdder http://www.tanelpoder.com

Troubleshooting: Reading XMS/XMSH execution plan profile

2783852310

SQL> @xms
SQL hash wvalue:
Ch Pr Op
1d ed ID Operation
0 0 SELECT STATEMENT
1 SORT AGGRHE
A 2 HASH JOIN
3 TABLE A(
A 4 HASH JOI
A 5 HASH J(
6 TABLE
A 7 HASH J
8 NESTH
A 9 HASH
10 TAH
A 11 HAY
12 MH
A 13 H
F 14
15
16 H
17
F 18 TAH
A 19 INDE
F 20 TABLH
21 TABLE A
Ch Op
1d ID Predicate Ir
0 2 — access ("CX
4 — access("T'
5 — access ("0
7 — access("0O'
9 - access("T'
Tanel Poder

ms spent in op.

Estimated rows
Real # rows
Op. iterations
Logical reads
Logical writes
Physical reads
Physical writes

Optimizer cost

Cursor address: 00000003DCA9EF28 | Statement firs
Object ms spent Estimated Real #rows Op. ite-
Name in op. output rows returned rations

milliseconds spent in rowsource function
(cumulative)

CBO rowcount estimate

Real measured rowcount from rowsource

Number of times the rowsource fetch was initialized
Consistent buffer gets

Current mode buffer gets (Note that some CUR gets
may not always be due writing...)

Physial reads done by the rowsource function
Physical writes done by the rowsource function

Least significant thing for measuring the real
execution efficiency of a statement

T IllrJ.II \AAAAAELL%Y IGIPUUGI O UTTT

Advanced Troubleshooting - Reading process stack

$ pstack 5855

#0 0x00c29402
#1 0x005509e4
#2 0x0e5769b7
#3 0x0e575946
#4 0x0e2c3adc
#5 0x0e2c3449
#6 0x0b007261
#7 0x0c8a7961
#8 0x0e2d4dec
#9 0x0e2ce9b8
#10 0x0e2cd214
#11 0x08754afa
#12 0x0e39b2a8
#13 0x08930c80
#14 0x0892af0f
#15 0x08c3d21la
#16 0x08ebcelb
#17 0x08c403ch
#18 0x0e3c3fad
#19 0x08b54500
#20 0x0e3be673
#21 0x0e53628a
#22 0x089%a87ab
#23 0x089%aaal0
#24 0x0e3be673
#25 0x089%a4de’76
#26 0x08cl626f
#27 0x08539%aeb
#28 0x08cl9a4?2
#29 0x08539%a68

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

in

__kernel_vsyscall
from /1lib/libc.so.6

semtimedop ()
sskgpwwait ()
skgpwwait ()
ksliwat ()
kslwaitctx. ()
kjusuc ()
ksipgetctx ()
ksgcmi ()
ksggtlctx ()
ksggelctx. ()
ktcwitl
kdddgb
kdddel
kaudel

gerdlFetch ()

delexe

(
(
(
(
t
(
opiexe (
kpoal8 (
opiodr (
ttcpip (
opitsk (
opiino (
opiodr (
opidrv (
souzo ()
opimai_real ()
ssthrdmain ()

main ()

Where to look up the meaning of Oracle
kernel function names?

1) Metalink:
175982.1 ORA-600 Lookup Error Categories

453521.1 ORA-04031 “KSFQ Buffers”
ksmlgpalloc

Search: <function> "executable entry point”
2) Oracle views

v§latch_misses (Im.sql)

v$latchholder (latchprofx.sqgl)

v$fixed view definition (d.sql, f.sql)

3) Internet search

Tanel Poder

Advanced Troubleshooting - Getting stack traces

OS stack dumper
= pstack - Solaris, Linux, HP-UX
= procstack - AIX
= gdb bt, mdb $c
= Procwatcher (Metalink note: 459694.1)

Windows
= windbg, procexp - but no symbolic function names in oracle.exe :(

Oracle internal
= oradebug short_stack
= oradebug dump errorstack
= alter session set events '942 trace name errorstack’

Tanel Poder

IN

ith os_explali

IONS WI

Advanced - Interpreting rowsource funct

use _nl (d)

use_nl (c)

select /*+ ordered use_nl (b)

*/

full (d)

C)

(

full

full (b)

full (a)

count (*)
from

sys.objs$ d

js$ ¢,

ob

Sys.

sys.obj$ b,

sys.objs a,

where

c.owner#
10000000000

= b.owner# and b.owner#

a.owner#
and c.owner#

d.owner# and rownum <=

Fetch

lan

ine in exec p

c
s S
3 o o
i)
0, O 0 = e
») Z Y. =
Q 0] H 1 = O
B O e O (@) [y
n B W — C
o) oC n @) 2 O
~ H S o g |
. e ¥, O O O — — Q| ® >
T OL OO0 o oo |LF
— On OAdC OH 0 Q| 3 @
= [PP O X @ I
T9] =] > A KH P n X O nw o
(o) b M O d W O O = o
10 H H M T M o &
— H AL Z2 0N g M =
DB HEH o E
M d O O = —
O o dmrO = %
@ O [U O
P o n S
n ~
Q,
" /
I — | + + T+ |
| _ |
" O | |
I g | |
| _ |
I — | + + T+ |
| _ |
| _ |
] .
_ v Y .
_ 0	
	(] > W
	B H A wmm
I & M O	
I O O	
	H O 4
_	K H =
I o	U un A WWM
I O	O] %
A B o	
D I Z %	
©	B D [4
I 4	@M O =]
I O	O O
[O PR BN)]	
I O	
_	
=	= === = = = = =
_	
	A4 N M < 10 O >~ oo o
O	
[e	
_ x	
_	

x X X

//www.tanelpoder.com

http

Tanel Poder

Simple full table scan

Full table scan scans all the rows in the table
= All table blocks are scanned up to the HWM
= Even if all rows have been deleted from table
= QOracle uses multiblock reads where it can

= Most efficient way when querying majority of rows
e And majority of columns

SQL> select * from emp;

PLAN_TABLE_OUTPUT

Plan hash wvalue: 4080710170

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		14	518	3 (0)	00:00:01
1	TABLE ACCESS FULL	EMP	14	518	3 (0)] 00:00:01	

Tanel Poder

Full table scan with a filter predicate

Filter operation throws away non-matching rows
= By definition, not the most efficient operation
= Filter conditions can be seen in predicate section

SQL> select * from emp where ename = 'KING';
PLAN TABLE_ OUTPUT

Plan hash wvalue: 4080710170

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
O	SELECT STATEMENT		1	37	3 (0O)] 00:00:01	
* 1	TABLE ACCESS FULL	EMP	1	37	3 (0O)] 00:00:01	

Predicate Information (identified by operation id):

1 - filter ("ENAME"='KING')

Tanel Poder

Simple B*tree index+table access

Index tree is walked from root to leaf
= Key values and ROWIDs are gotten from index
= Table rows are gotten using ROWIDs

= Access operator fetches only matching rows
e As opposed to filter which filters through the whole child rowsource

SQL> select * from emp where empno = 10;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)
0	SELECT STATEMENT		1	37	1 (0)
1	TABLE ACCESS BY INDEX ROWID	EMP	1	37	1 (0)
* 2	INDEX UNIQUE SCAN	PK_EMP	1		0 (0)

Predicate Information (identified by operation id):

2 — access ("EMPNO"=10)

Tanel Poder

Predicate attributes

Predicate = access
= A means to avoid processing (some) unneeded data at all

Predicate = filter
= Everything from child row source is processed / filtered
= The non-matching rows are thrown away

SQL> select * from emp
2 where empno > 7000
3 and ename like 'KINGS';

Id	Operation	Name	Rows	Bytes	Cost (%CPU)
O	SELECT STATEMENT		1	27	3 (0)
* 1	TABLE ACCESS BY INDEX ROWID	EMP	1	27	3 (0)
* 2	INDEX RANGE SCAN	PK_EMP	9		2 (0)

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

1 - filter ("ENAME" LIKE 'KING%')
2 — access ("EMPNO">7000)

Tanel Poder

Index fast full scan

Doesn't necessarily return keys in order

= The whole index segment is just scanned as Oracle finds its blocks on
disk (in contrast to tree walking)

= Multiblock reads are used

= As indexes don't usually contain all columns that tables do, FFS is
more efficient if all used columns are in index

= Used mainly for aggregate functions, min/avg/sum,etc

= Optimizer must know that all table rows are represented in index!
(null values and count example)

SQL> select min(empno), max(empno) from emp;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)
O	SELECT STATEMENT		1	5	25 (0)
1	SORT AGGREGATE		1	5	
2	INDEX FAST FULL SCAN	PK EMP	54121	264K	25 (0)

Tanel Poder

Nested Loop Join

Nested loop join
= Read data from outer row source (upper one)
= Probe for a match in inner row source for each outer row

SQL> select d.dname, d.loc, e.empno, e.ename
2 from emp e, dept d
3 where e.deptno = d.deptno
4 and d.dname = 'SALES'
5 and e.ename like 'K%';

Id	Operation	Name	Rows	Bytes	Cost
O	SELECT STATEMENT		1	37	4
1	NESTED LOOPS		1	37	4
* 2	TABLE ACCESS FULL	EMP	1	17	3]
* 3	TABLE ACCESS BY INDEX ROWID	DEPT	1	20	1
* 4	INDEX UNIQUE SCAN	PK_DEPT	1		

Predicate Information (identified by operation id):
2 — filter ("E"."DEPTNO" IS NOT NULL AND "E"."ENAME" LIKE 'K%')
3 — filter("D"."DNAME"='SALES")
4 — access("E"."DEPTNO"="D"."DEPTNO")

Tanel Poder

Hash Join

Only for equijoins/non-equijoins (outer joins in 10g)
= Builds an array with hashed key values from smaller row source

= Scans the bigger row source, builds and compares hashed key values
on the fly, returns matching ones

SQL> select d.dname, d.loc, e.empno, e.ename
2 from emp e, dept d
3 where e.deptno = d.deptno
4 and d.dname = 'SALES'
5 and e.ename between 'A%' and 'M%';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
| 0 | SELECT STATEMENT | | 1 | 37 | 9 (12)]
|* 1 | HASH JOIN | | 1 | 37 | 9 (12)]
| * 2 | TABLE ACCESS FULL| DEPT | 1 | 20 | 2 (0) |
|* 3 | TABLE ACCESS FULL| EMP | 4 | 68 | 6 (0) |

Predicate Information (identified by operation id):
1l - access("E"."DEPTNO"="D"."DEPTNO")
2 — filter ("D"."DNAME"='SALES")

3 - filter ("E"."DEPTNO" IS NOT NULL AND "E"."ENAME"<='M%'
AND"E"."ENAME">='A%")

Tanel Poder

Sort-Merge Join

Requires both rowsources to be sorted
= Either by a sort operation
= Or sorted by access path (index range and full scan)

Cannot return any rows before both rowsources are sorted (non-
cascading)

NL and Hash join should be normally preferred

SQL> select /*+ USE_MERGE(d,e) */ d.dname, d.loc, e.empno, e.ename
2 from emp e, dept d
where e.deptno = d.deptno
4 and d.dname = 'SALES'
5 and e.ename between 'A%' and 'X%'
6 order by e.deptno;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
| O | SELECT STATEMENT | | 1245 | 46065 | 64 (10)]
1	MERGE JOIN		1245	46065	64 (10)
* 2] TABLE ACCESS BY INDEX ROWID	DEPT	1	20	2 (0)	
3 INDEX FULL SCAN	PK_DEPT	4		1 (0)	
* 4	SORT JOIN		3735	63495	62 (10)]
* 5	TABLE ACCESS FULL	EMP	3735	63495	61 (9)

Tanel Poder

View merging

Optimizer merges subqueries, inline and stored views and runs
queries directly on base tables

= Not always possible though due semantic reasons

SQL> create or replace view empview
2 as

Can be controlled using:

3 select e.empno, e.ename, d.dname : :
Parameter: _complex_view_merging
¢ from emp e, dept d simple_view_merging
5 where e.deptno = d.deptno; — — -
Hints: MERGE, NO_MERGE
SQL> select * from empview
2 where ename = 'KING';
Id	Operation	Name	Rows	Bytes	Cost (%CPU)
O	SELECT STATEMENT		7 210	5 (20)	
* 1	HASH JOIN		7 210	5 (20)	
2	TABLE ACCESS FULL	DEPT	4	52	2 (0)
* 3] TABLE ACCESS BY INDEX ROWID	EMP	7 119	2 (0)		
* 4	INDEX RANGE SCAN	EMP_ENAME	8		1 (0)

Tanel Poder

Subqguery unnesting

Subqueries can be unnested, converted to anti- and semijoins

SQL> select * from employees e

2 where exists (Can be controlled using:

3 select ename from bonus b Parameter: _unnest_subqueries

4 where e.ename = b.ename Hints: UNNEST, NO _UNNEST

S)
| Id | Operation | Name | Rows | Bytes | Cost (
| O | SELECT STATEMENT | | 1 | 37 | 5
| 1 | NESTED LOOPS | | 1 | 37 | 5
| 2 | NESTED LOOPS | | 1 | 24 | 4
| 3 SORT UNIQUE | | 1 | 7 2
| 4 | TABLE ACCESS FULL | BONUS | 1 | 7 2
| * 5 | TABLE ACCESS BY INDEX ROWID| EMP | 1 17 | 1
| * 6 | INDEX RANGE SCAN | EMP_ENAME | 37 | | 1
| 7 TABLE ACCESS BY INDEX ROWID | DEPT | 1 | 13 | 1
|* 8 | INDEX UNIQUE SCAN | PK_DEPT | 1 | | 0

Predicate Information (identified by operation id):
5 - filter("E"."DEPTNO" IS NOT NULL)
6 — access("E"."ENAME"="B"."ENAME")
8 — access ("E"."DEPTNO"="D"."DEPTNO")

Tanel Poder

SQL execution plan recap (again)

Execution plan lines are just Oracle kernel functions!
= In other words, each row source is a function

Data can only be accessed using access path functions
= Only access paths can access physical data
= Access paths process physical data, return row sources

Data processing starts from first line without children
= In other words the first leaf access path in execution plan

Row sources feed data to their parents
= Can be non-cascading, semi-cascading or cascading

A join operation can input only two row sources

= However, it is possible to combine result of more than 2 row
sources for some operations (not for joins though)

= Index combine, bitmap merging, filter, union all, for example

Tanel Poder

Questions?

Tanel Poder
http://www.tanelpoder.com

